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1. Introduction 24 

Over the past several decades, the number of megacities (exceeding 10 million people in 25 

population) has been rapidly growing around the world as a result of rapid economic growth and 26 

unprecedented urbanization (United Nations 2014). For example, in Asia alone, more than 30 27 

cities (Fig. 1) are listed as megacities (e.g., Tokyo, Shanghai, Guangzhou), demanding effective 28 

management for city planning, operations, and disaster mitigation. The smart city approach 29 

requires data and information to be collected from multiple sources and to be integrated with 30 

modern technologies, providing a new and cost-effective way for decision makers to manage 31 

cities in different sizes around the world as well as making information publicly available for 32 

city residents.  33 

Environmental information at different spatial and temporal scales (e.g., ranging from 34 

local to regional and from real time to climate) is one of critical sources for city planning, 35 

management, and disaster mitigation (Seto 2011). Each year, severe weather events (e.g., heavy 36 

rain or snowfall, tropical cyclones, heat waves) can strike a city around the world without 37 

warning and cause severe damage to a city’s infrastructure as well as interrupt people’s daily life. 38 

Effective management of water, air pollution, energy, etc. requires environmental data to be 39 

available at anytime and on demand. Nonetheless, making data available for timely and easy 40 

access is critically important for effective city planning and management activities (Seto 2011). 41 

Climate change can have a profound impact on cities around the world. For example, for 42 

cities in tropical and sub-tropical regions, changes in heavy rainfall amount as well as tropical 43 

cyclone size, frequency, and intensity can impact a city’s operations, infrastructure, 44 

development, and long-term planning. Sea level rise is another major concern for city managers 45 

and residents in coastal cities. To be able to monitor and predict such change is critical for a 46 
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city's planning and operations and all cannot be done without environmental data.  47 

On the other hand, studies show that cities, especially large cities, can have an impact on 48 

local weather (e.g., Zhang et al. 2017; Jin et al. 2005, 2010, 2011; Shepherd and Jin 2004; Seto 49 

and Shepherd 2009; Kauffmann et al. 2007; Guo et al. 2016). Activities from urbanization and 50 

city development can dramatically modify its surrounding natural environment and landscape. 51 

For example, urban heat islands (UHI) provide manmade heat sources that can change its 52 

surrounding atmospheric environment and potentially fuel severe weather. Air pollution that is 53 

associated with automobiles, industries, etc. supplies the atmosphere with aerosols that could 54 

modify meteorological processes such as clouds and precipitation (Jin et al. 2005, 2011).  55 

Nonetheless, the few examples above have shown the importance of environmental data 56 

in city’s planning and management. Such data consist of multi-disciplines at multi-scales in 57 

space and time. Traditional ground-based observations (e.g. rain gauges, automatic weather 58 

stations) have limitations because it is costly and time-consuming to deploy such measurements, 59 

especially at regional and global scales. On the other hand, satellite-based measurements, in 60 

combination with ground-based measurements, can overcome many of these difficulties and 61 

provide environmental data at multiple-scales (Seto 2007, 2011; Boucher and Seto 2009).  62 

As mentioned earlier, the smart city approach requires collection of interdisciplinary data 63 

and information from multiple sources and integration with modern technologies to provide a 64 

new and cost-effective way for researchers and decision makers to study and manage cities. In 65 

this book chapter, we introduce NASA satellite-based global and regional observations with 66 

emphasis on the hydrologic cycle (e.g., precipitation, wind, temperature, soil moisture) for smart 67 

cities. These products, consisting of both near-real-time and historical datasets, are publicly 68 

available free of charge and can be used for global and regional research and applications. 69 
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Examples of using these datasets in smart cities are included. The chapter is organized as 70 

follows, first, a brief overview of NASA global satellite-based data products, followed by data 71 

services and tools, two examples of using satellite-based datasets in megacities, and finally 72 

summary and future plans.  73 

2. Overview of NASA Satellite-based Global Data Products for Smart Cities  74 
 75 

Significant progress has been made in satellite Earth’s observations since the first 76 

successful launch of weather satellite, the Television Infrared Observation Satellite (TIROS), by 77 

NASA on April 1, 1960. In particular, NASA’s Earth Observing System (EOS) is a coordinated 78 

series of polar-orbiting and low inclination satellites for long-term global observations of the 79 

land surface, biosphere, solid Earth, atmosphere, and oceans to enable an improved 80 

understanding of the Earth as an integrated system (NASA 2017a). At present, there are ~28 81 

active satellite missions currently in space to provide observations to scientific and application 82 

users around the world (NASA 2017a).  The Earth Observing System Data and Information 83 

System (EOSDIS) currently hosts ~22 PB of Earth Observation (EO) data at twelve DAACs 84 

(Distributed Active Archive Centers) and it is expected to grow rapidly over the coming years, to 85 

more than 37 (246 PB) PB by 2020 (2025) (NASA 2017b). Such large EO data archive is an 86 

important asset for environmental research and applications around the world including smart 87 

cities because the smart city approach requires multidisciplinary datasets collected from multiple 88 

sources.  89 

NASA’s EOS and other past NASA satellite mission data are available and distributed by 90 

the EOSDIS, with major facilities at twelve DAACs located throughout the United States 91 

(NASA 2017b). Scientific disciplines at twelve DAACs include atmosphere, cryosphere, human 92 

dimensions, land, ocean, calibrated radiance, solar radiance, etc. Table 1 lists the twelve DAACs 93 
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and their discipline-oriented data archives (NASA 2017b). For example, ocean winds and sea 94 

surface temperature data are available at the Physical Oceanography DAAC in the Jet Propulsion 95 

Laboratory (JPL). Lighting data from the NASA-JAXA Tropical Rainfall Measuring Mission 96 

(TRMM) are archived at the Global Hydrology Resource Center (GHRC) DAAC. As of this 97 

writing, a large collection of datasets and services are available at the twelve NASA data centers. 98 

However, due to page limit, it is difficult to give a detailed description for each DAAC. Here we 99 

focus on the Goddard Earth Sciences and Data and Information Services Center (GES DISC), 100 

located in Greenbelt, Maryland, USA, because it archives a large amount of interdisciplinary 101 

datasets in comparison to other DAACs. Datasets used in the examples in this article are 102 

archived at the GES DISC.  103 

2.1. Satellite-based Data Products at the GES DISC 104 

The GES DISC hosts global and regional satellite-based interdisciplinary data products 105 

from these scientific disciplines: precipitation, solar irradiance, atmospheric composition and 106 

dynamics, global modeling, etc. Currently, over 2700 unique data products are archived at the 107 

GES DISC and distributed to the public. Given such a large collection of products and space 108 

limitation, we can only present a brief overview of several major projects that are closely related 109 

to research and applications for smart cities.  110 

2.1.1. Multi-satellite and Multi-sensor Merged Global Precipitation Products  111 

Over the years, algorithms that utilize multi-satellites and multi-sensors (i.e., microwave 112 

and geostationary infrared sensors), or blended methods, have been developed to overcome a 113 

very limited spatial and temporal coverage from any single satellite (Adler et al. 2003; Huffman 114 

et al. 2007, 2009, 2010, 2012, 2013; Joyce et al. 2004; Mahrooghy et al. 2012; Hong et al. 2007, 115 

Sorooshian et al. 2000; Behrangi et al. 2009; Aonashi et al. 2009) and products are widely used 116 
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in hydrometeorological research and applications. For example, the TRMM Multi-Satellite 117 

Precipitation Analysis (TMPA) products in Table 2 (Huffman et al. 2007, 2010, 2012, 2013), 118 

developed by the Mesoscale Atmospheric Processes Laboratory at NASA Goddard Space Flight 119 

Center, provide precipitation estimates at 3-hourly and monthly temporal resolutions on a 0.25-120 

degree x 0.25-degree grid available from January 1998 to present. The TMPA consists of two 121 

products: near-real-time (3B42RT, spatial coverage: 60°N-60°S) and research-grade (3B42, 122 

spatial coverage: 50°N-50°S). The former is less accurate, but provides quick precipitation 123 

estimates suitable for near-real-time monitoring and modeling activities (e.g. Wu et al. 2012). 124 

The latter, available approximately two months after observation, is calibrated with gauge data, 125 

different sensor calibration, and additional post-processing in the algorithm. The resulting 126 

product is more accurate and suitable for research (Huffman et al. 2007, 2010). Over the years, 127 

the TMPA products have been widely used in various research and applications (e.g. Wu et al. 128 

2012, Bitew et al. 2012, Gourley et al. 2011, Su et al. 2011, Gianotti et al. 2012, Tekeli 2017, 129 

Engel et al. 2017, Tan and Duan 2017).  130 

During the GPM era, the Integrated Multi-satellitE Retrievals for GPM (IMERG) product 131 

suite (Huffman et al. 2017) not only addresses limited spatial and temporal coverage issues in 132 

TRMM but also has been significantly improved comparing the TMPA products in terms of 133 

spatial and temporal resolutions, i.e., from 0.25 degree to 0.1 degree and from 3-hourly to half-134 

hourly (Table 2).  The IMERG suite contains of three output products, “Early satellites” (lag 135 

time: ~6 hours), “Late satellites” (lag time: ~18 hours), and the final “Satellite-gauge” (lag time: 136 

~4 months) along with additional new input and intermediate files, creating a new opportunity 137 

for research and applications.  The retro-processing of the IMERG product suite back to the 138 

TRMM era will be released in 2018. 139 
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2.1.2. Global and Regional Land Data Assimilation Products 140 

Global and regional land data assimilation system data products include optimal fields of 141 

land surface states and fluxes (NASA 2017c). The fields are generated by ingesting satellite- and 142 

ground-based observational data products and using advanced land surface modeling and data 143 

assimilation techniques (NASA 2017c). A methodology is to implement a Land Data 144 

Assimilation System (LDAS) that consists of land-surface models (uncoupled from an 145 

atmospheric model). These land-surface models are forced with observations and thus the model 146 

results are not affected by Numerical Weather Prediction forcing biases (NASA 2017c). This 147 

research has been implemented using existing Surface Vegetation Atmosphere Transfer Schemes 148 

(SVATS) by NOAA, NASA/GSFC, NCAR, Princeton University, and the University of 149 

Washington at 1/8th-degree resolution across central North America and at 1/4th-degree 150 

resolution globally to evaluate these critical science questions (NASA 2017c). These LDAS 151 

systems have been run retrospectively starting in January 1979 and continue in near real-time, 152 

and are forced with gauge precipitation observations, satellite precipitation data, radar 153 

precipitation measurements, and output from numerical weather prediction models (NASA 154 

2017c). Model parameters are derived from the existing high-resolution vegetation and soil 155 

coverages. The LDAS model results support water resources applications, numerical weather 156 

prediction studies, numerous water and energy cycle investigations, and also serve as a 157 

foundation for interpreting satellite and ground-based observations (NASA 2017c). Eventually, 158 

in situ or remotely-sensed observations (soil moisture, temperature, snow) of LDAS storages and 159 

fluxes (including evaporation, sensible heat flux, runoff) will be used to further validate and 160 

constrain the LDAS predictions using data assimilation techniques (NASA 2017c). The GES 161 
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DISC hosts the archive of data products from GLDAS, NLDAS, NCA-LDAS, and FLDAS 162 

(NASA 2017c).  163 

2.1.3. Modern-Era Retrospective Analysis for Research and Applications (MERRA) 164 

Products  165 

The Modern-Era Retrospective analysis for Research and Applications, Version 2 166 

(MERRA-2), has been developed at the NASA Global Modeling and Assimilation Office 167 

(GMAO) at the NASA Goddard Space Flight Center (NASA 2017d). MERRA-2 provides global 168 

data beginning in 1980 and runs a few weeks behind real time (NASA 2017d). Alongside the 169 

meteorological data assimilation using a modern satellite database, MERRA-2 includes an 170 

interactive analysis of aerosols that feed back into the circulation, uses NASA's observations of 171 

stratospheric ozone and temperature (when available), and takes steps towards representing 172 

cryogenic processes (NASA 2017d). The MERRA project focuses on historical analyses of the 173 

hydrological cycle on a broad range of weather and climate time scales and places the NASA 174 

EOS suite of observations in a climate context (NASA 2017d). Compared to the previous 175 

version, advances have been made in the assimilation system that enables assimilation of modern 176 

hyperspectral radiance and microwave observations, along with GPS-Radio Occultation datasets 177 

(Riencker et al. 2011; Reichie and Liu 2014; Suarez and Bacmeister 2015; Takacs et al. 2015). 178 

MERRA-2 also includes advances in both the Goddard Earth Observing System Model, Version 179 

5 (GEOS-5) and the GSI (Gridpoint Statistical Interpolation) assimilation system and NASA 180 

ozone observations after 2005. MERRA-2 begins from 1980 to present.  181 

There are two types of precipitation parameters in MERRA-2: a) precipitation from the 182 

atmospheric model (variable PRECTOT in the MERRA-2 data collection) and b) observation-183 

corrected precipitation (variable PRECTOTCORR; Reichle and Liu 2014; Bosilovich et al. 184 
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2015). Observational data are introduced in the latter parameter due to considerable errors that 185 

propagate into land surface hydrological fields and beyond (Reichle et al. 2011). 186 

Bosilovich et al. (2015) have conducted a general evaluation of MERRA-2 precipitation 187 

estimates, including precipitation climatology, interannual variability, diurnal cycle, Madden-188 

Julian Oscillation (MJO) events, global water cycle and U.S. summertime variability. Major 189 

findings (Bosilovich et al. 2015) are, 1) an overestimate of the modeled precipitation in the 190 

tropical west Pacific Ocean, the eastern tropical ITCZ (the Intertropical Convergence Zone) and 191 

the SPCZ (the South Pacific convergence zone) in DJF and JJA (Bosilovich et al. 2011, 2015); 2) 192 

Extreme values of modeled precipitation in the vicinity of high topography in the tropics; 3) An 193 

upward trend in the MERRA-2 time series exists and by contrast no trend is observed in GPCP 194 

(the Global Precipitation Climatology Project); 4) Larger modeled precipitation diurnal cycle 195 

(PDC) amplitude is found over the high mountains; 5) The phases of modeled PDC are not well 196 

reproduced in several regions such as the U.S. Great Plains; 6) MJO signal from modeled 197 

precipitation is stronger than GPCP; 7) MERRA-2 can reproduce the observed precipitation and 198 

anomalies in U.S. summertime, reasonably well. Although the preliminary evaluation provides a 199 

basic understanding of the MERRA-2 precipitation products, evaluation for extreme rainfall 200 

events is missing and as a result, it is not clear about  MERRA-2 precipitation behavior and 201 

characteristics in extreme events. 202 

The complete list of MERRA-2 products along with documentation and more is available 203 

on the official MERRA-2 Web site (NASA 2017d). To facilitate data access, the GES DISC has 204 

developed several data services and tools to be described in the next section. 205 

3. Data Services  206 

Although a large collection of NASA global satellite data is available for research and 207 
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applications around the world, many researchers find it challenging to discover, access, and use 208 

NASA satellite remote sensing data (Liu and Acker 2017). Heterogeneous data formats, complex 209 

data structures, large-volume data storage, special programming requirements, diverse analytical 210 

software options, and other factors often require a significant investment in time and resources, 211 

especially for novices (Liu and Acker 2017). Over the years, data services have been developed 212 

at NASA’s EOSDIS DAACs to improve NASA data discovery and access. First, an EOSDIS 213 

Web search interface (NASA 2017e) has been developed and anyone, with a Web browser, can 214 

access NASA data products at twelve DAACs through this interface. Figure 2 is a screenshot of 215 

the EOSDIS Web search interface, showing a search box where users can type in a data variable 216 

name such as precipitation. User registration is required for downloading data from all EOSDIS 217 

data services. Users can also visit each individual DAAC and use their Web interfaces to access 218 

discipline-oriented data products and services. Furthermore, special discipline-oriented data tools 219 

have been developed at DAACs and they are organized in the following categories: Search and 220 

Order, Data Handling, Subsetting and Filtering, Geolocation, Reprojection, and Mapping, and 221 

Data Visualization & Analysis (NASA 2017f). EOSDIS DAACs also support Web services and 222 

various Web protocols for machine-to-machine data access and applications such as OPeNDAP 223 

(Open source Project for a Network Data Access Protocol), WMS (Web Map Service), GDS 224 

(GrADS Data Server), THREDDS, https, etc.  To address data and science related issues and 225 

inquires from users,  DAACs provide user services including Frequent Asked Questions (FAQs), 226 

data recipes, user forums, email or phone inquiry, etc. Due to space limitation, it is difficult to 227 

describe all data tools and services at the DAACs in one article. Since we focus on datasets for 228 

the hydrologic cycle in this article, data services at the GES DISC and other well-known services 229 

are presented. 230 
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3.1. Point-and-click Online Tools 231 

Over the years, surveys (e.g. Kearns 2017) and experience from user support services at 232 

the GES DISC show that non-expert users and those who occasionally use satellite-based 233 

products prefer point-and-click data tools in order to obtain graphic and data assessment results. 234 

As mentioned above, new dataset assessment activities may not be straight-forward and can be 235 

costly. Point-and-click tools provide fast and easy access to satellite-based data products for all 236 

users without the need of coding and downloading data and software. Here, we introduce two 237 

popular point-and-click online tools developed by NASA: the NASA Worldview and the NASA 238 

GES DISC Giovanni. 239 

3.1.1. NASA's Worldview 240 

NASA’s Worldview is a tool developed by the NASA's EOSDIS project (Fig. 3). It 241 

provides the capability to interactively browse global, full-resolution satellite imagery and then 242 

download the underlying data (NASA 2017g). Worldview contains 400+ NASA satellite-based 243 

products and most of them are updated within three hours of observation, essentially showing the 244 

entire Earth as it looks "right now" (NASA 2017g). Worldview is a user-friendly online tool to 245 

support time-critical application areas such as wildfire management, air quality measurements, 246 

and flood monitoring. Mobile access is also available for Worldview. Worldview is powered by 247 

the Global Imagery Browse Services (GIBS) to rapidly retrieve its imagery for an interactive 248 

browsing experience (NASA 2017g). Data in Worldview images can be exported as several 249 

popular image formats such as JPEG and PNG. Image data in GeoTIFF and KMZ are also 250 

available. Figure 3 is a screenshot of Worldview, showing the Web interface and Hurricane 251 

Harvey in Gulf of Mexico on August 24, 2017. Hurricane Harvey made landfall near Corpus 252 

Christ, Texas, USA. A record-breaking flood in Houston, Texas was reported due to heavy 253 
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rainfall from Hurricane Harvey’s rainbands. Fatalities and enormous economic loss in Houston 254 

were reported as well. 255 

3.1.2. NASA GES DISC Giovanni 256 

Point-and-click tools can be further developed for in-depth data analysis and 257 

visualization. A new infrastructure system, the Geospatial Interactive Online Visualization and 258 

Analysis Infrastructure (Giovanni, NASA 2017h), has been developed by the GES DISC to assist 259 

a wide range of users around the world with data access and evaluation, as well as with scientific 260 

exploration and discovery (Liu and Acker 2017; Acker and Leptoukh 2007). There are 8 261 

disciplines and 74 measurements available in Giovanni and they are listed in Tables 3 and 4, 262 

respectively. Over 1800 variables are currently available in Giovanni as of this writing and more 263 

are being added.  Data variables in Giovanni are multi-missions and multi-disciplinary (Fig. 4). 264 

Users can access these variables without downloading data and software (Liu and Acker 2017). 265 

Over the years, a wide range of activities of using Giovanni has been reported by users, ranging 266 

from classroom activities to scientific investigation. Over 1300 peer-reviewed papers across 267 

various Earth science disciplines and other areas were published with help from Giovanni.  268 

Giovanni has both Keyword and Faceted Search capabilities in its Web interface (Fig. 4) 269 

for locating variables of interest. For example, a search for ‘precipitation’ returns over 100 270 

related variables (Fig. 4). By using facets, one can filter for variables based on satellite missions 271 

(TRMM, GPM), instruments, spatial or temporal resolution, etc.   272 

Many commonly used analytical and plotting capabilities (Liu and Acker 2017), used to 273 

capture spatial and temporal characteristics of datasets, are available in Giovanni. Mapping 274 

options include time-averaging, animation, accumulation (precipitation), time-averaged overlay 275 

of two datasets, and user-defined climatology. For time series, options include of area-averaged, 276 
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differences, seasonal, and Hovmöller diagrams. Cross-sections include latitude-pressure, 277 

longitude-pressure, time-pressure, and vertical profile for 3-D datasets from AIRS (Atmospheric 278 

Infrared Sounder) and MERRA. For data comparison, Giovanni has built-in processing code for 279 

data sets that require measurement unit conversion and regridding. Commonly used comparison 280 

functions include map and time-series differences, as well as correlation maps and X-Y scatter 281 

plots (area-averaged or time-averaged).  Zonal means and histogram distributions can also be 282 

plotted. Samples of the analytical and plotting features are shown in Figs. 4 and 5.  283 

Visualization features (Liu and Acker 2017) include interactive map area adjustment; 284 

animation; interactive scatter plots; adjustments of data range; change of color palette; 285 

contouring; and scaling (linear or log).  The on-the-fly area adjustment feature allows an 286 

interactive and detailed examination of a result map without re-plotting data. Animations are 287 

helpful to track evolution of an event or seasonal changes. Interactive scatter plots allow 288 

identification of the geolocation of a point of interest in a scatter plot. Adjustments of any of 289 

these plots provide custom options to users.  290 

To support increasing socioeconomic and GIS activities in Earth sciences, vector 291 

shapefiles have been added for countries, states in the United States, and major watersheds 292 

around the world. Available functions for shapefiles are time-averaged and accumulated maps, 293 

area-averaged time series, and histogram. Land-sea masks have been recently added.  294 

All data files involved in Giovanni processing are listed and available in the lineage page. 295 

Available image formats are PNG, GEOTIFF, and KMZ (Keyhole Markup Language) that can 296 

be used for different applications and software packages; for example, KMZ files can be 297 

conveniently imported into Google Earth where a rich collection of overlays is available.  All 298 

input and output data are available in NetCDF, which can be handled by many off-the-shelf 299 
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software packages. Furthermore, users can bookmark URLs generated by Giovanni processing 300 

for reference, documentation, or sharing with other colleagues. 301 

3.2. Data Rod Services 302 

Providing long time series data to the hydrology community can be a challenge (Teng et 303 

al. 2012). In hydrology, earth surface features are expressed as discrete spatial objects such as 304 

watersheds, river reaches, and point observation sites; and time varying data are contained in 305 

time series associated with these spatial objects. Long-time histories of data may be associated 306 

with a single point or feature in space. Most remote sensing precipitation products are expressed 307 

as continuous spatial fields, with data sequenced in time from one data file to the next. 308 

Hydrology tends to be narrow in space and deep in time, which poses a challenge during the 309 

GPM era. For example, to generate a one-year time series, one needs to pull all the 0.1 deg., half-310 

hourly IMERG product, which can be time consuming and not suitable for online data services 311 

due to the large volume of data.   312 

The concept of data rods (Teng et al. 2012; Gallaher and Grant 2012; Rui et al. 2012, 313 

2013) can be applied to this challenge. Teng et al. (2012) proposed two general solutions: 1) 314 

retrieve multiple time series for short time periods and stitch the multiple time series into desired 315 

single long time series and 2) reprocess (parameter and spatial subsetting) and archive data as 316 

one-time cost approach. The resultant time series files would be geospatially searchable and 317 

could be optimally accessed and retrieved by any user at any time (Teng et al. 2012).  One 318 

drawback for the data rod approach is that there are a lot of files to be generated and maintained. 319 

For example, for IMERG, the number of files will be 1300 x 3600 = 4,680,000. At present, the 320 

concept has been implemented in CUAHSI-HIS (Consortium of Universities for the 321 

Advancement of Hydrologic Science, Inc. - Hydrologic Information System) and other 322 
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hydrologic community tools (Rui et al. 2013) where TMPA data time series data can be 323 

accessed. 324 

3.3. Other Web Data Services 325 

NASA satellite-based data products at the GES DISC are also accessible (NASA 2017i) 326 

via other Web services and protocols including https (the data archive), OPeNDAP, WMS, GDS, 327 

etc. These protocols support for data downloading activities such as daily operations on the 328 

user’s side. The https method provides direct access to product archives. OPeNDAP, WMS, 329 

GDS, etc. provide remote access to individual variables within datasets in a form usable by many 330 

tools and software packages such as IDV, McIDAS-V, Panoply, Ferret, GrADS, etc. OPeNDAP 331 

is a framework that simplifies all aspects of scientific data networking and makes local data 332 

accessible to remote locations regardless of local storage format (OPeNDAP 2017). OPeNDAP 333 

software is freely available to anyone. WMS is a standard Web protocol for serving 334 

georeferenced map images over the Internet generated by a map server using data from a GIS 335 

database and the specifications developed and published by the Open Geospatial Consortium 336 

(OGC) in 1999 (WMS, 2017). The GDS, is a stable, secure data server that provides subsetting 337 

and analysis services across the internet (GDS 2017). The core of the GDS is OPeNDAP, a 338 

software framework used for data networking that makes local data accessible to remote 339 

locations. 340 

4. Examples 341 

4.1. The Pearl River Delta  342 

The Pearl River Delta (PRD) is located in Guangdong province, the People's Republic of 343 

China (PRC). The PRD is a low-lying area surrounding the Pearl River estuary where the Pearl 344 

River flows into the South China Sea (Wikipedia 2017a). The region has experienced an 345 
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economic boom and accelerated urbanization since the region was named as one of the three 346 

Special Economic Zones (SEZs) by the PRC, and is one of the most densely urbanized regions in 347 

the world (Wikipedia 2017a). The city of Guangzhou has become a mega city, the 3rd largest in 348 

PRC and the largest in southern China, with a population of over 15 million. Adding the nearby 349 

cities, the total population in PRD is over 40 million, forming the so-called the Pearl River Delta 350 

Mega City. Figure 6 is the PRD viewed from the 2016 annual NASA black marble, a nighttime 351 

view of the Earth derived from a composite of data from the Visible Infrared Imaging 352 

Radiometer Suite (VIIRS) instrument on board the joint NASA/NOAA Suomi National Polar-353 

orbiting Partnership (Suomi NPP) satellite. UHI effect is also quite visible from the MODIS-354 

Terra monthly nighttime land-surface temperatures averaged between December 2016 and 355 

February 2017 (Fig. 7). Giving economic activities at such scale, it is important to understand 356 

environment impacts that are associated with economic activities and EO data play an important 357 

role to provide such analysis and information. In this chapter, we present few examples regarding 358 

how NASA EO datasets are used in this region.  359 

4.1.1. Typhoon Nida Rainfall 360 

Formed on July 28, 2016, Typhoon Nida struck the Philippines in late July and made 361 

landfall in the PRD as a Category-1 typhoon (Fig. 8) in early August (Wikipedia 2017b). 362 

According to news reports, Nida caused heavy economic loss in the affecting countries and 363 

regions including the Philippines, the mainland of PRC, Hong Kong, and Vietnam (Wikipedia 364 

2017b). In PRC alone, ~495,000 people in five southern provinces were affected and 37,000 365 

required evacuation and 2,100 needed emergency assistances (Wikipedia 2017b). Homes and 366 

crops were destroyed or damaged. People’s lives in the region were severely disrupted, 367 

according to news reports (Wikipedia 2017b).  368 



 

17 

 

NASA EO data are available for Nida. At the GES DISC, precipitation from TMPA, 369 

GPM, IMERG, MERRA, GLDAS, etc. with different spatial and temporal resolutions are 370 

available for research and analysis. Figure 8 is an example of total rainfall in mm accumulated 371 

between August 1-5, 2016. It is seen that heavy rainfall was received in the western part of the 372 

PRD and the heaviest rainfall area is found in the adjacent ocean off the coast of the PRD (Fig. 373 

8). MERRA provides data such as wind, temperature, pressure, etc. for meteorological analysis. 374 

GLDAS provides data for hydrological research and analysis. Many of these datasets are 375 

available in the GES DISC Giovanni and ready for assessment, analysis, and visualization 376 

without the need to download data and software.  377 

4.1.2. Atmospheric Composition Preliminary Analysis  378 

As mentioned, the PRD has experienced an unprecedented economic growth and 379 

urbanization since 1979. The environmental conditions in the region have also experienced the 380 

changes, which requires EO data for research and analysis. MERRA uses various NASA satellite 381 

observations and the chemistry model to generate reanalysis products for research and 382 

applications. Figures 9 and 10 are the time series plots of sample MERRA-2 atmospheric 383 

chemistry variables for the PRD: monthly aerosol optical depth, SO2 surface mass concentration, 384 

CO surface concentration, and black carbon surface mass concentration, showing seasonal and 385 

inter-annual variations in the PRD over the past 30+ years. In Fig. 9, it is seen that aerosol 386 

optical depth experienced a large increasing trend since 2000, followed by a decreasing trend 387 

after mid-2000 or so. According to reports (Wikipedia 2017c), the PRD region’s GDP in 2005 388 

was ~US$221.2 billion, compared to US$89 billion in 2000. Further investigation is needed to 389 

better understand and link these observation results with the economic growth in the region. The 390 

SO2 surface mass concentration experienced a steady increase before 2000, followed a rapid 391 
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climb shortly after 2000 (Fig. 9). The increasing period ended near 2010 and the concentration 392 

still remained high with fluctuations afterwards (Fig. 9). The similar trends are also found in CO 393 

surface concentration (Fig. 10). The black carbon surface mass concentration (Fig. 10) is quite 394 

similar to the aerosol optical depth in Fig. 9. It is necessary to point out that these time series 395 

plots in Figs. 9 and 10 are preliminary and need to be verified independently with ground 396 

measurements to ensure that biases and other issues are addressed properly.  397 

4.2. Estimation of Hurricane Contribution to Annual Precipitation in Maryland, USA 398 

The state of Maryland, USA is located in the Mid-Atlantic region near the nation's capital 399 

or the Washington D.C. According the 2016 report (Censor Bureau 2016) from the U.S. Censor 400 

Bureau, the population of the region that consists of Washington-Arlington-Alexandria and D.C.-401 

Virginia-Maryland-West Virginia, reached over 6 million in 2015 and became the 6th most 402 

populous metro area in the U.S.  403 

Despite the fact that major hurricanes (category 3 or above) rarely make landfall in the 404 

state, Maryland is indirectly influenced by hurricane remnants (NOAA 2017a) such as rainfall. 405 

Giving the global warming scenario, it is important to understand changes of hurricane size, 406 

track and intensity since all of them could have significant impacts on precipitation in Maryland. 407 

In this study, the TMPA precipitation products were used to assess hurricane precipitation. 408 

Unlike many land-only precipitation products, the TMPA products not only provide precipitation 409 

information over land but also over oceans, therefore, they are suitable for this type of study. The 410 

objectives of this study are to estimate hurricane contribution to annual precipitation in Maryland 411 

and its inter-annual variation (Liu and Liu 2015). The methodology could be applied to other 412 

states or regions as well. 413 

4.2.1. Data and Methods  414 
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The Version-7 3-hourly (3B42) and monthly (3B43) TMPA products are used in this 415 

study. 3B42 and 3B43 provide a near-global (50° N-S) coverage of both land and oceans and 416 

allow tracking of hurricane precipitation since some hurricanes can pass by Maryland over ocean 417 

without making landfall and influence the state with rain, winds, waves, etc.  418 

The TMPA algorithm (Huffman 1997; Huffman et al. 2007, 2010; Huffman and Bolvin 419 

2014) consists of multiple independent precipitation estimates from the TMI (TRMM 420 

Microwave Imager), Advanced Microwave Scanning Radiometer for Earth Observing Systems 421 

(AMSR-E), Special Sensor Microwave Imager (SSMI), Special Sensor Microwave 422 

Imager/Sounder (SSMIS), Advanced Microwave Sounding Unit (AMSU), Microwave Humidity 423 

Sounder (MHS), microwave-adjusted merged geo-infrared (IR), and monthly accumulated rain 424 

gauge analysis from the Global Precipitation Climate Centre (GPCC). The preprocessing 425 

(Huffman and Bolvin 2014) of the TMPA products is as follows: (a) all input passive microwave 426 

(PMW) products mentioned above are inter-calibrated to TRMM Combined Instrument (TCI) 427 

precipitation estimates (TRMM product 3B31); (b) the IR estimates are computed using monthly 428 

matched microwave-IR histogram matching; (c) then missing data in individual 3-hourly 429 

merged-microwave fields are filled with the IR estimates.  When the preprocessing is complete, 430 

the 3-hourly multi-satellite fields are summed for the month and combined with the monthly 431 

GPCC gauge analysis using inverse-error-variance weighting to form the best-estimate 432 

precipitation rate and RMS precipitation-error estimates (Huffman and Bolvin 2014).  433 

On April 15, 2015, TRMM was decommissioned after 17 years of continuously 434 

collecting data from space. Although the TMPA is still in production using the remaining 435 

satellites in the constellation, the changes and impact of the loss of TRMM on the TMPA 436 

characteristics are expected to be small since TRMM only covers a band of 38° N-S and most of 437 
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Maryland is located north of this band. In addition, the use of gauge data from GPCC will correct 438 

biases due to the loss of TRMM. The TMPA data between 1998 and 2013 are used in this study. 439 

TMPA (Version 7) products were downloaded from the GES DISC (Liu et al. 2012). 440 

There have been few processing issues (Huffman and Bolvin 2014) before, but all the TMPA 441 

data used in this study are current. 442 

Hurricane track data were obtained from the Best Track Data (HURDAT2), available at 443 

the NOAA National Hurricane Center (NOAA 2017b). The radius for hurricane influence is set 444 

to 500 km (Jiang and Zipser 2010), given typical  445 

When tropical cyclones make landfall, they leave moist tropical and sub-tropical oceans 446 

and enter drier land in mid-latitudes. As a result, water vapor as energy supply from underneath 447 

is cut off and they quickly lose strength and become remnants. When the remnants interact with 448 

frontal systems in mid-latitudes, rainfall is often enhanced when tropical warm and moist air 449 

collides with cooler and drier air from north and extra lifting is generated. Meanwhile, it is 450 

difficult to separate rainfall areas between tropical cyclones and frontal systems. In this study, we 451 

do not attempt to separate the two rain regimes when they collide together. As long as the track 452 

data are still available, rainfall within the 500-km radius is considered as hurricane rainfall (Jiang 453 

and Zipser 2010). 454 

The terrain of Maryland is characterized with the Appalachian Mountains in the west, 455 

running through the panhandle (can obstruct passing cold fronts and cause rain shadow) and the 456 

flat area in the east adjacent to the Atlantic Ocean (exposes area to coastal weather systems). 457 

4.1.1. Preliminary Results  458 

From 1998 to 2014, Hurricane Floyd, Charley, Ernesto, and Irene influenced the state of 459 

Maryland. Our preliminary results from Fig. 11 show that Maryland experienced relatively high 460 
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amounts of precipitation in years 2003 and 2011 and relatively low amounts precipitation in the 461 

year 2001. In addition, further calculations show the average annual precipitation in Maryland is 462 

about 1200 mm/year. Figure 11 shows how much precipitation that hurricanes have contributed 463 

to annual precipitation. The highest contribution of precipitation (35%) occurred in 2011, due to 464 

major hurricanes passing through Maryland such as Hurricane Irene. Additionally, in 2001 when 465 

Maryland was experiencing a drought, no hurricanes passed through the state. The average 466 

contribution of precipitation by hurricanes to annual precipitation is about 15%. Figure 11 shows 467 

the average of the average annual precipitation compared against each year’s precipitation with 468 

and without precipitation contributed by hurricanes. Results show that when precipitation 469 

contributed by hurricanes is removed, most annual precipitations fall below the average.  Some 470 

exceptions occur such as in year 2003, where Maryland was receiving relatively high monthly 471 

precipitation in general throughout the year.  As a result, one could conclude that precipitation 472 

contributed by hurricanes does affect Maryland’s precipitation. 473 

5. Summary and Future Plans 474 

In this chapter, we introduce NASA satellite-based data and services with emphasis on 475 

the hydrologic cycle and data products at the GES DISC. Significant progress has been made in 476 

satellite Earth’s observations since the first successful launch of weather satellite, TIROS, by 477 

NASA on April 1, 1960. In particular, NASA’s EOS project is a coordinated series of polar-478 

orbiting and low inclination satellites for long-term global observations of the land surface, 479 

biosphere, solid Earth, atmosphere, and oceans to enable an improved understanding of the Earth 480 

as an integrated system. NASA’s EOS and other past NASA satellite mission data are available 481 

and distributed by the EOSDIS, with major facilities at twelve DAACs located throughout the 482 

United States. Science disciplines at twelve DAACs include atmosphere, cryosphere, human 483 
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dimensions, land, ocean, and calibrated radiance and solar radiance, etc. Datasets are emphasized 484 

and used in the examples in this article are archived at the GES DISC.  485 

The GES DISC hosts global and regional satellite-based data products from these science 486 

disciplines: precipitation, solar irradiance, atmospheric composition and dynamics, global 487 

modeling, etc. There are over 2700 unique data products archived at the GES DISC. In this 488 

chapter, we only present several major projects that are closely related to smart cities.  489 

Multi-satellite and multi-sensor merged global precipitation products are available at the 490 

GES DISC. In particular, The IMERG suite contains of three output products, “Early satellites” 491 

(lag time: ~4 hours), “Late satellites” (lag time: ~18 hours), and the final “Satellite-gauge” (lag 492 

time: ~2 months) along with additional new input and intermediate files.  The retro-processing of 493 

the IMERG product suite back to the TRMM era will be released in late 2018.  494 

Global and regional land data assimilation system data products include optimal fields of 495 

land surface states and fluxes. They are generated by ingesting satellite- and ground-based 496 

observational data products and using advanced land surface modeling and data assimilation 497 

techniques. Both forcing data and model results support water resources applications, numerical 498 

weather prediction studies, numerous water and energy cycle investigations, and also serve as a 499 

foundation for interpreting satellite and ground-based observations. 500 

The Modern-Era Retrospective analysis for Research and Applications, Version 2 501 

(MERRA-2), has been developed at the NASA Global Modeling and Assimilation Office 502 

(GMAO) at the NASA Goddard Space Flight Center. MERRA-2 provides global data beginning 503 

in 1980 and runs a few weeks behind real time. Alongside the meteorological data assimilation 504 

using a modern satellite database, MERRA-2 includes an interactive analysis of aerosols that 505 

feed back into the circulation, uses NASA's observations of stratospheric ozone and temperature 506 



 

23 

 

(when available), and takes steps towards representing cryogenic processes. The MERRA project 507 

focuses on historical analyses of the hydrological cycle on a broad range of weather and climate 508 

time scales and places the NASA EOS suite of observations in a climate context. 509 

Two popular point-and-click tools are presented. First, NASA’s Worldview provides the 510 

capability to interactively browse global, full-resolution satellite imagery and then download the 511 

underlying data (NASA 2017g). Worldview contains 400+ NASA satellite-based products and 512 

most of them are updated within three hours of observation, essentially showing the entire Earth 513 

as it looks "right now" (NASA 2017g). On the other hand, NASA’s GES DISC Giovanni is 514 

designed for in-depth data analysis and visualization. There are 8 disciplines and 74 515 

measurements available in Giovanni and they are listed in Tables 3 and 4, respectively. Over 516 

1700 variables are currently available in Giovanni as of this writing and more are being added.  517 

Data variables in Giovanni are multi-disciplinary and users can access them without 518 

downloading data and software (Liu and Acker 2017). Over the years, a wide range of activities 519 

of using Giovanni has been reported by users, ranging from classroom activities to scientific 520 

investigation. Over 1300 peer-reviewed papers across various Earth science disciplines and other 521 

areas were published with help from Giovanni.  522 

NASA satellite-based data products at the GES DISC are also accessible (NASA 2017i) 523 

via other Web services and protocols including https (the data archive), OPeNDAP, WMS, GDS, 524 

etc. 525 

Two examples were presented regarding the use of satellite-based data products in 526 

understanding environment changes and conditions in megacities. In Example 1, the TMPA 527 

precipitation dataset was presented with the accumulated rainfall map for Typhoon Nida that 528 

made landfall in the PRD region. Time series plots of several atmospheric composition datasets 529 
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from MERRA-2 were plotted and analyzed, showing significant changes in the atmospheric 530 

environment in PRD, which could be associated with the unprecedented economic growth and 531 

urbanization in the region, especially since 2000. It is necessary to mention that these 532 

preliminary results need to be verified independently with ground or other measurements to 533 

address biases and other issues. 534 

In Example 2, the effect of hurricanes on annual precipitation in Maryland was 535 

investigated. From 1998 to 2014, Hurricane Floyd, Charley, Ernesto, and Irene influenced the 536 

state of Maryland. Our preliminary results from Fig. 11 show that Maryland experienced 537 

relatively high amounts of precipitation in years 2003 and 2011 and relatively low amounts 538 

precipitation in the year 2001. In addition, further calculations show the average annual 539 

precipitation in Maryland is about 1200 mm/year. Figure 11 shows how much precipitation 540 

hurricanes have contributed to annual precipitation. The highest contribution of precipitation 541 

(35%) occurred in 2011, possibly due to major hurricanes passing through Maryland such as 542 

Hurricane Irene. Additionally, in 2001 when Maryland was experiencing a drought, no 543 

hurricanes passed through the state. The average contribution of precipitation by hurricanes to 544 

annual precipitation is about 15%. Figure 11 shows the average of the average annual 545 

precipitation compared against each year’s average precipitation with and without precipitation 546 

contributed by hurricanes. Results show that when precipitation contributed by hurricanes is 547 

removed, most annual precipitations fall below the average for each.  Some exceptions occur 548 

such as in year 2003, where Maryland was receiving relatively high monthly precipitation in 549 

general.  As a result, one could conclude that precipitation contributed by hurricanes does affect 550 

Maryland’s precipitation. 551 
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As of this writing, EOSDIS hosts ~22 PB of Earth Observation (EO) data at twelve 552 

DAACs and it is expected to grow to more than 37 (246 PB) PB by 2020 (2025) (NASA 2017a). 553 

Such large EO data archive is an important asset for environmental research and applications 554 

around the world. Over the years, NASA EOSDIS has developed data services and tools to 555 

facilitate data discovery and access in twelve discipline-oriented DAACs. For complex issues of 556 

smart cities, it often requires a multi-disciplinary approach which needs an information system 557 

that can integrate all these data products archived at twelve DAACs as well as other related data 558 

products from users, providing a one-stop shop for data and services by removing obstacles such 559 

as data discovery, access, interoperability, etc.  and better address environmental issues 560 

encountered in city planning, operations, research, etc. (Güneralp and Seto 2008). The NASA 561 

GES DISC Giovanni is an example that makes multi-discipline data variables available in one 562 

place and efforts are being carried out to include additional datasets from other DAACs and 563 

make them available in Giovanni. The ongoing NASA EOSDIS Cloud Evolution Project (NASA 564 

2017j) will have the potential for developing an information system that supports multi-565 

disciplinary data products and services. Moving from discipline-oriented to multi-discipline-566 

oriented data services is not a simple task, which will involve in a team of data scientists from 567 

NASA and other organizations as well as from end users of smart cities due to many obstacles to 568 

be overcome such as data formats, data volume, data structures, terminology in different 569 

disciplines, etc. Nonetheless, still a lot of work needs to be done to develop better information 570 

systems and services for efficiently solving problems in smart cities. 571 
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Table 1. EOSDIS DAACs and their archived products (NASA 2017b). 839 

Distributed Active Archive Center 
(DAAC) Data Products 

Alaska Satellite Facility (ASF) DAAC SAR products, sea ice, polar processes, geophysics, 
etc. 

Atmospheric Science Data Center (ASDC) Radiation budget, clouds, aerosols, tropospheric 
chemistry, etc. 

Crustal Dynamics Data Information 
System (CDDIS) 

Space geodesy, solid Earth, etc. 

Global Hydrology Resource Center 
(GHRC) DAAC 

Hydrologic cycle, severe weather interactions, 
lightning, atmospheric convection, etc. 

Goddard Earth Sciences Data and 
Information Services Center (GES DISC) 

Global precipitation, solar irradiance, atmospheric 
composition and dynamics, global modeling, etc. 

Land Processes DAAC (LP DAAC) Surface reflectance, land cover, vegetation indices, 
etc. 

Level 1 and Atmosphere Archive and 
Distribution System (LAADS) DAAC 

MODIS and VIIRS Level-1 and atmosphere data 
products 

National Snow and Ice Data Center 
(NSIDC) DAAC 

Snow and ice, cryosphere, climate interactions, sea 
ice, etc. 

Oak Ridge National Laboratory (ORNL) 
DAAC 

Biogeochemical dynamics, ecological data, 
environmental processes, etc. 

Ocean Biology DAAC (OB.DAAC) Ocean biology, sea surface temperature, etc. 
Physical Oceanography DAAC 
(PO.DAAC) 

Gravity, sea surface temperature, ocean winds, 
topography, circulation and currents, etc. 

Socioeconomic Data and Applications 
Data Center (SEDAC) 

Human interactions, land use, environmental 
sustainability, geospatial data, etc. 

 840 
Table 2. Global gridded multi-sensor and multi-satellite precipitation products (Liu et al. 2012, 841 
2017). 842 

Dataset Description Date Range 
Spatial 
Resolution 
and coverage 

Temporal 
Resolution 

The Integrated 
Multi-satellitE 
Retrievals for 
GPM (IMERG) – 
“Early, Late, and 
Final” 

Rain rate from multi-
satellite, multi-sensor and 

gauge measurements 

1998-01-01 - 
present 

Gridded 10 
km, global, 

initially 60°N-
60°S 

Half-
hourly, 

daily, and 
monthly 

TRMM Multi-
satellite 
Precipitation 
Analysis (Near-
real-time, 
Research) 

Rain rate from multi-
satellite and multi-sensor 

measurements 

1998-01-01 - 
present 

Gridded 25 
km, 60°N-

60°S 
(Research: 
50°N-50°S) 

3-hourly, 
daily and 
monthly 
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Table 3. Disciplines and variables in Giovanni (NASA 2017h). 843 

Disciplines (No. of Variables) 
Aerosols (183) 
 
 Atmospheric Chemistry (79) 
 
 Atmospheric Dynamics (385) 
 
 Cryosphere (15) 
 
 Hydrology (997) 
 
 Ocean Biology (44) 
 
 Oceanography (48) 
 
 Water and Energy Cycle (1065) 
 844 
Table 4. Measurements and variables in Giovanni (NASA 2017h). 845 

Measurement (No. of Variables) 
Aerosol Index 
(3) 
 
 Aerosol 
Optical Depth 
(83) 
 
 Air Pressure 
Anomaly (1) 
 
 Air Pressure 
(51) 
 
 Air 
Temperature 
(84) 
 
 Albedo (21) 
 
 Altitude (8) 
 
 Angstrom 
Exponent (17) 
 
 Atmospheric 
Moisture (114) 
 
 Black Carbon 
(5) 

Buoyancy (2) 
 
 CH4 (16) 
 
 CO (21) 
 
 CO2 (2) 
 
 Canopy 
Water 
Storage (6) 
 
 Chlorophyll 
(11) 
 
 Cloud 
Fraction (32) 
 
 Cloud 
Properties 
(75) 
 
 Component 
Aerosol 
Optical Depth 
(7) 
 
 Diffusivity 
(1) 

Dust (23) 
 
 Emissivity (4) 
 
 Energy (12) 
 
 Erythemal UV 
(4) 
 
 Evaporation 
Anomaly (1) 
 
 Evaporation (44) 
 
Evapotranspiratio
n (41) 
 
 Flooding (3) 
 
 Geopotential 
(11) 
 
 Heat Flux (102) 

Height, Level 
(12) 
 
 Incident 
Radiation 
Anomaly (2) 
 
 Incident 
Radiation (70) 
 
 Iron (2) 
 
 Irradiance (6) 
 
 Latent Heat 
Flux (5) 
 
 Latent Heat (1) 
 
 Mixed Layer 
Depth (2) 
 
 NO2 (2) 
 
 Nitrate (2) 

OLR (19) 
 
 Organic Carbon 
(8) 
 
 Ozone (28) 
 
 Particulate 
Matter (42) 
 
 Phytoplankton 
(16) 
 
 Precipitation 
Anomaly (2) 
 
 Precipitation 
(107) 
 
 Quality Info (1) 
 
 Radiation, Net 
(56) 
 
 Reflectivity (25) 

Runoff (63) 
 
 SO2 (4) 
 
 SO4 (4) 
 
 Scattering 
Angle (4) 
 
 Sea Salt (5) 
 
 Sea Surface 
Temperature 
(3) 
 
 Sensible Heat 
Flux (5) 
 
 Sensible Heat 
(1) 
 
 Snow/Ice (37) 
 
 Soil Moisture 
(203) 

Soil 
Temperature 
(105) 
 
 Statistics (24) 
 
 Streamflow 
(1) 
 
 Surface 
Runoff (1) 
 
 Surface 
Temperature 
(55) 
 
 Total AOD 
Climatology 
Anomaly (6) 
 
 Total Aerosol 
Optical Depth 
(49) 
 
 UV Exposure 
(1) 
 
 Vegetation (9) 
 
 Vorticity (2) 

Water Storage 
(1) 
 
 Wind Stress 
Magnitude (4) 
 
 Wind 
Velocity (7) 
 
 Wind (72) 
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Figure captions: 846 
 847 
Figure 1. Cities in Asia viewed from the 2016 annual NASA black marble, a nighttime view of 848 
the Earth , derived from a composite of data from the Visible Infrared Imaging Radiometer Suite 849 
(VIIRS) instrument on board the joint NASA/NOAA Suomi National Polar-orbiting Partnership 850 
(Suomi NPP) satellite (Lee et al. 2006). (Credit: NASA Worldview). 851 
 852 
Figure 2. NASA Earthdata (NASA 2017b) provides a Web interface for searching and accessing 853 
NASA data at twelve EOSDIS DAACs.  854 
 855 
Figure 3. The NASA Worldview Web interface (NASA 2017g) showing Hurricane Harvey in 856 
Gulf of Mexico on August 24, 2017.  857 
 858 
Figure 4. Top: The Web portal of NASA GES DISC Giovanni (NASA 2017h) with many 859 
features for easy locating a variable of interest, data analysis, and visualization; Middle: 860 
Corrected reflectance (true color) from MODIS Aqua on September 4, 2017, showing smoke 861 
from forest fires spreads across the United States and Canada (More detailed story is available at, 862 
https://earthobservatory.nasa.gov/IOTD/view.php?id=90899). Bottom: The combined dark target 863 
and deep blue aerosol optical depth (AOD) at 0.55 micron for land and ocean from MODIS 864 
Aqua on September 4, 2017. Combined with NASA Worldview, Giovanni provides analysis and 865 
visualization of the smoke aerosol for the event.  866 
 867 
Figure 5. Sample graphics from Giovanni. Top: Accumulated rainfall (the GPM IMERG Late 868 
Run daily product) in mm from Hurricane Harvey (see Fig. 3) in Houston, Texas between 869 
August 21-31, 2017. Bottom: Time series of area averaged daily accumulated precipitation 870 
(mm/day) in Houston.  871 
 872 
Figure 6. Similar to Fig. 1, except for the Pearl River Delta.  873 
 874 
Figure 7. Map of MODIS-Terra monthly nighttime land-surface temperatures averaged between 875 
December 2016 and February 2017, showing visible light produced from anthropogenic sources 876 
(e.g. city lights) (Lee et al. 2006).  877 
 878 
Figure 8. Top: Track of Typhoon Nida (source: Unisys Weather); Bottom: Rainfall total received 879 
from Typhoon Nida between August 1-5, 2016 (Rainfall product: the 3-hourly TMPA research 880 
product).  881 
 882 
Figure 9. Time series from MERRA-2 showing seasonal and internal variations of monthly 883 
aerosol optical depth (top) and SO2 surface mass concentration (bottom) in PRD.  884 
 885 
Figure 10. Similar to Fig. 9, except for CO surface concentration (top) and black carbon surface 886 
mass concentration (bottom).  887 
 888 
Figure 11. Top: Time series of annual precipitation (in mm) in Maryland with hurricane 889 
contributed precipitation highlighted. Bottom: Average annual precipitation (in red) in Maryland 890 
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compared against annual precipitation with (in green) and without (in blue) hurricane contributed 891 
precipitation (units: mm). 892 
 893 
  894 
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 895 

Figure 1. Cities in Asia viewed from the 2016 annual NASA black marble, a nighttime view of 896 
the Earth, derived from a composite of data from the Visible Infrared Imaging Radiometer Suite 897 
(VIIRS) instrument on board the joint NASA/NOAA Suomi National Polar-orbiting Partnership 898 
(Suomi NPP) satellite (Lee et al. 2006). (Credit: NASA Worldview). 899 
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 901 

Figure 2. NASA Earthdata (NASA 2017b) provides a Web interface for searching and accessing 902 
NASA data at twelve EOSDIS DAACs.  903 
  904 
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 905 

Figure 3. The NASA Worldview Web interface (NASA 2017g) showing Hurricane Harvey in 906 
Gulf of Mexico on August 24, 2017.  907 
  908 
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 909 

Figure 4. Top: The Web portal of NASA GES DISC Giovanni (NASA 2017h) with many 910 
features for easy locating a variable of interest, data analysis, and visualization; Middle: 911 
Corrected reflectance (true color) from MODIS Aqua on September 4, 2017, showing smoke 912 
from forest fires spreads across the United States and Canada (More detailed story is available at, 913 
https://earthobservatory.nasa.gov/IOTD/view.php?id=90899). Bottom: The combined dark target 914 
and deep blue aerosol optical depth (AOD) at 0.55 micron for land and ocean from MODIS 915 
Aqua on September 4, 2017. Combined with NASA Worldview, Giovanni provides analysis and 916 
visualization of the smoke aerosol for the event.  917 
  918 
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 919 

Figure 5. Sample graphics from Giovanni. Top: Accumulated rainfall (the GPM IMERG Late 920 
Run daily product) in mm from Hurricane Harvey (see Fig. 3) in Houston, Texas between 921 
August 21-31, 2017. Bottom: Time series of area averaged daily accumulated precipitation 922 
(mm/day) in Houston.  923 
  924 
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 925 

Figure 6. Similar to Fig. 1, except for the Pearl River Delta, showing visible light produced from 926 
anthropogenic sources (e.g. city lights) (Lee et al. 2006). 927 
  928 
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 929 

Figure 7. Map of MODIS-Terra monthly nighttime land-surface temperatures averaged between 930 
December 2016 and February 2017.  931 
  932 
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 933 

Figure 8. Top: Track of Typhoon Nida (source: Unisys Weather); Bottom: Rainfall total received 934 
from Typhoon Nida between August 1-5, 2016 (Rainfall product: the 3-hourly TMPA research 935 
product).  936 
  937 



 

46 

 

 938 

Figure 9. Time series from MERRA-2 showing seasonal and internal variations of monthly 939 
aerosol optical depth (top) and SO2 surface mass concentration (bottom) in PRD.  940 
  941 
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 942 

 943 

Figure 10. Similar to Fig. 9, except for monthly CO surface concentration (top) and black carbon 944 
surface mass concentration (bottom).  945 
  946 
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 947 

Figure 11. Top: Time series of annual precipitation (in mm) in Maryland with hurricane 948 
contributed precipitation highlighted. Bottom: Average annual precipitation (in red) in Maryland 949 
compared against annual precipitation with (in green) and without (in blue) hurricane contributed 950 
precipitation (units: mm). 951 


